snowflake.snowpark.modin.plugin.extensions.groupby_overrides.DataFrameGroupBy.cumsum¶
- DataFrameGroupBy.cumsum(axis: Union[int, Literal['index', 'columns', 'rows']] = 0, *args, **kwargs)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/groupby_overrides.py#L493-L499)¶
- Cumulative sum for each group. - See also - Series.groupby
- Apply a function groupby to a Series. 
- DataFrame.groupby
- Apply a function groupby to each row or column of a DataFrame. 
 - Examples - For SeriesGroupBy: - >>> lst = ['a', 'a', 'b'] >>> ser = pd.Series([6, 2, 0], index=lst) >>> ser a 6 a 2 b 0 dtype: int64 - >>> ser.groupby(level=0).cumsum() a 6 a 8 b 0 dtype: int64 - For DataFrameGroupBy: - >>> data = [[1, 8, 2], [1, 2, 5], [2, 6, 9]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"], ... index=["fox", "gorilla", "lion"]) >>> df a b c fox 1 8 2 gorilla 1 2 5 lion 2 6 9 - >>> df.groupby("a").groups {1: ['fox', 'gorilla'], 2: ['lion']} - >>> df.groupby("a").cumsum() b c fox 8 2 gorilla 10 7 lion 6 9