modin.pandas.Series.sort_values¶
- Series.sort_values(axis: Axis = 0, ascending: bool | int | Sequence[bool] | Sequence[int] = True, inplace: bool = False, kind: str = 'quicksort', na_position: str = 'last', ignore_index: bool = False, key: IndexKeyFunc | None = None)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/series_overrides.py#L1626-L1667)¶
- Sort by the values. - Sort a Series in ascending or descending order by some criterion. - Parameters:
- axis ({0 or 'index'}) – Unused. Parameter needed for compatibility with DataFrame. 
- ascending (bool or list of bools, default True) – If True, sort values in ascending order, otherwise descending. 
- inplace (bool, default False) – If True, perform operation in-place. 
- kind ({'quicksort', 'mergesort', 'heapsort', 'stable'} default 'None') – Choice of sorting algorithm. By default, Snowpark Pandaas performs unstable sort. Please use ‘stable’ to perform stable sort. Other choices ‘quicksort’, ‘mergesort’ and ‘heapsort’ are ignored. 
- na_position ({'first' or 'last'}, default 'last') – Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. 
- ignore_index (bool, default False) – If True, the resulting axis will be labeled 0, 1, …, n - 1. 
- key (callable, optional) – If not None, apply the key function to the series values before sorting. This is similar to the key argument in the builtin - sorted()function, with the notable difference that this key function should be vectorized. It should expect a- Seriesand return an array-like.
 
- Returns:
- Series ordered by values or None if - inplace=True.
- Return type:
- Series or None 
 - Notes - Snowpark pandas API doesn’t currently support distributed computation of sort_values when ‘key’ argument is provided. - See also - Series.sort_index
- Sort by the Series indices. 
- DataFrame.sort_values
- Sort DataFrame by the values along either axis. 
- DataFrame.sort_index
- Sort DataFrame by indices. 
 - Examples - >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 - Sort values ascending order (default behaviour) - >>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64 - Sort values descending order - >>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 - Sort values inplace - >>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 - Sort values putting NAs first - >>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64 - Sort a series of strings - >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object - >>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object - Sort using a key function. Your key function will be given the - Seriesof values and should return an array-like.- >>> s = pd.Series(['a', 'B', 'c', 'D', 'e']) >>> s.sort_values() 1 B 3 D 0 a 2 c 4 e dtype: object