modin.pandas.DataFrame.iloc¶
- property DataFrame.iloc[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.23.0/src/snowflake/snowpark/modin/plugin/extensions/base_overrides.py#L1421-L1433)¶
- Purely integer-location based indexing for selection by position. - .iloc[]is primarily integer position based (from- 0to- length-1of the axis), but may also be used with a boolean array.- Allowed inputs are: - An integer, e.g. - 5,- -1.
- A list or array of integers, e.g. - [4, 3, 0].
- A slice object with ints, e.g. - 1:7.
- A boolean array. 
- A - callablefunction with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value.
- A tuple of row and column indexes. The tuple elements consist of one of the above inputs, e.g. - (0, 1).
 - Notes - To meet the nature of lazy evaluation: - Snowpark pandas - .ilocignores out-of-bounds indexing for all types of indexers (while pandas- .ilocwill raise error except slice indexer). If all values are out-of-bound, an empty result will be returned.
- In Snowpark pandas - .iloc, the length of boolean list-like indexers (e.g., list, Series, Index, numpy ndarray) does not need to be the same length as the row/column being indexed. Internally a join is going to be performed so missing or out of bound values will be ignored.
 - See also - DataFrame.iat
- Fast integer location scalar accessor. 
- DataFrame.loc
- Purely label-location based indexer for selection by label. 
- Series.iloc
- Purely integer-location based indexing for selection by position. 
 - Examples - >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000}] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 - Indexing just the rows - With a scalar integer. - >>> type(df.iloc[0]) <class 'modin.pandas.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 - >>> df.iloc[-1] a 1000 b 2000 c 3000 d 4000 Name: 2, dtype: int64 - With a list of integers. - >>> df.iloc[[0]] a b c d 0 1 2 3 4 - >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 - With out-of-bound values in the list and those out of bound values will be ignored. - >>> df.iloc[[0, 1, 10, 11]] a b c d 0 1 2 3 4 1 100 200 300 400 - With all out-of-bound values. Return empty dataset. - >>> df.iloc[[10, 11, 12]] Empty DataFrame Columns: [a, b, c, d] Index: [] - With a slice object. - >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 - With a boolean mask the same length as the index. - >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 - When a boolean mask shorter than the index. - >>> df.iloc[[True, False]] a b c d 0 1 2 3 4 - When a boolean mask longer than the index. - >>> df.iloc[[True, False, True, True, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 - With a callable, useful in method chains. The x passed to the - lambdais the DataFrame being sliced. This selects the rows whose index labels are even.- >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 - Indexing both axes - You can mix the indexer types for the index and columns. Use - :to select the entire axis.- With scalar integers. - >>> df.iloc[0, 1] 2 - With lists of integers. - >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 - With slice objects. - >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 - With a boolean array whose length matches the columns. - >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 - With a callable function that expects the Series or DataFrame. - >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000