snowflake.snowpark.modin.plugin.extensions.resample_overrides.Resampler.indices¶
- property Resampler.indices: defaultdict[Hashable, list][source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/resample_overrides.py#L183-L192)¶
Dict {group name -> group indices}.
- Return type:
collections.defaultdict[Hashable, list]
Notes
Beware that the return value is a python dictionary, so evaluating this property will trigger evaluation of the pandas dataframe and will materialize data that could be as large as the size of the grouping columns.
Examples
For Series:
>>> lst1 = pd.date_range('2020-01-01', periods=4, freq='1D') >>> ser1 = pd.Series([1, 2, 3, 4], index=lst1) >>> ser1 2020-01-01 1 2020-01-02 2 2020-01-03 3 2020-01-04 4 Freq: None, dtype: int64
>>> ser1.resample('2D').indices defaultdict(<class 'list'>, {Timestamp('2020-01-01 00:00:00'): [0, 1], Timestamp('2020-01-03 00:00:00'): [2, 3]})
For DataFrame:
>>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] >>> df = pd.DataFrame(data, ... columns=["a", "b", "c"], ... index=pd.date_range('2020-01-01', periods=4, freq='1D')) >>> df a b c 2020-01-01 1 8 2 2020-01-02 1 2 5 2020-01-03 2 5 8 2020-01-04 2 6 9
>>> df.resample('2D').indices defaultdict(<class 'list'>, {Timestamp('2020-01-01 00:00:00'): [0, 1], Timestamp('2020-01-03 00:00:00'): [2, 3]})