snowflake.snowpark.modin.plugin.extensions.groupby_overrides.SeriesGroupBy.cummax¶
- SeriesGroupBy.cummax(axis: Union[int, Literal['index', 'columns', 'rows']] = 0, numeric_only: bool = False, *args, **kwargs)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/groupby_overrides.py#L493-L502)¶
Cumulative max for each group.
See also
Series.groupby
Apply a function groupby to a Series.
DataFrame.groupby
Apply a function groupby to each row or column of a DataFrame.
Examples
For SeriesGroupBy:
>>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] >>> ser = pd.Series([1, 6, 2, 3, 1, 4], index=lst) >>> ser a 1 a 6 a 2 b 3 b 1 b 4 dtype: int64 >>> ser.groupby(level=0).cummax() a 1 a 6 a 6 b 3 b 3 b 4 dtype: int64
For DataFrameGroupBy:
>>> data = [[1, 8, 2], [1, 1, 0], [2, 6, 9]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"], ... index=["cow", "horse", "bull"]) >>> df a b c cow 1 8 2 horse 1 1 0 bull 2 6 9 >>> df.groupby("a").groups {1: ['cow', 'horse'], 2: ['bull']} >>> df.groupby("a").cummax() b c cow 8 2 horse 8 2 bull 6 9