snowflake.snowpark.modin.plugin.extensions.groupby_overrides.DataFrameGroupBy.value_counts¶
- DataFrameGroupBy.value_counts(subset: Optional[list[str]] = None, normalize: bool = False, sort: bool = True, ascending: bool = False, dropna: bool = True)[source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/groupby_overrides.py#L991-L1014)¶
Return a Series or
DataFrame
containing counts of unique rows.- Parameters:
subset (list-like, optional) – Columns to use when counting unique combinations.
normalize (bool, default False) –
Return proportions rather than frequencies.
Note that when normalize=True, groupby is called with sort=False, and value_counts is called with sort=True, Snowpark pandas will order results differently from native pandas. This occurs because native pandas sorts on frequencies before converting them to proportions, while Snowpark pandas computes proportions within groups before sorting.
See issue for details: https://github.com/pandas-dev/pandas/issues/59307 (https://github.com/pandas-dev/pandas/issues/59307)
sort (bool, default True) – Sort by frequencies.
ascending (bool, default False) – Sort in ascending order.
dropna (bool, default True) – Don’t include counts of rows that contain NA values.
- Returns:
Series if the groupby as_index is True, otherwise DataFrame.
- Return type:
Notes
If the groupby as_index is True then the returned Series will have a MultiIndex with one level per input column.
If the groupby as_index is False then the returned
DataFrame
will have an additional column with the value_counts. The column is labelled ‘count’ or ‘proportion’, depending on the normalize parameter.
By default, rows that contain any NA values are omitted from the result.
By default, the result will be in descending order so that the first element of each group is the most frequently-occurring row.
Examples
>>> df = pd.DataFrame({ ... 'gender': ['male', 'male', 'female', 'male', 'female', 'male'], ... 'education': ['low', 'medium', 'high', 'low', 'high', 'low'], ... 'country': ['US', 'FR', 'US', 'FR', 'FR', 'FR'] ... })
>>> df gender education country 0 male low US 1 male medium FR 2 female high US 3 male low FR 4 female high FR 5 male low FR
>>> df.groupby('gender').value_counts() gender education country female high FR 1 US 1 male low FR 2 US 1 medium FR 1 Name: count, dtype: int64
>>> df.groupby('gender').value_counts(ascending=True) gender education country female high FR 1 US 1 male low US 1 medium FR 1 low FR 2 Name: count, dtype: int64
>>> df.groupby('gender').value_counts(normalize=True) gender education country female high FR 0.50 US 0.50 male low FR 0.50 US 0.25 medium FR 0.25 Name: proportion, dtype: float64
>>> df.groupby('gender', as_index=False).value_counts() gender education country count 0 female high FR 1 1 female high US 1 2 male low FR 2 3 male low US 1 4 male medium FR 1
>>> df.groupby('gender', as_index=False).value_counts(normalize=True) gender education country proportion 0 female high FR 0.50 1 female high US 0.50 2 male low FR 0.50 3 male low US 0.25 4 male medium FR 0.25