snowflake.snowpark.modin.plugin.extensions.groupby_overrides.DataFrameGroupBy.idxmin¶
- DataFrameGroupBy.idxmin(axis: Union[int, Literal['index', 'columns', 'rows']] = _NoDefault.no_default, skipna: bool = True, numeric_only: bool = False) Series [source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/groupby_overrides.py#L637-L658)¶
Return the index of the first occurrence of minimum over requested axis.
NA/null values are excluded based on skipna.
- Parameters:
axis ({{0 or 'index', 1 or 'columns'}}, default None) –
The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise. If axis is not provided, grouper’s axis is used.
Snowpark pandas does not support axis=1, since it is deprecated in pandas.
Deprecated since version 2.1.0: For axis=1, operate on the underlying object instead. Otherwise, the axis keyword is not necessary.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is NA, the result will be NA.
numeric_only (bool, default False) – Include only float, int or boolean data.
- Returns:
Indexes of minima along the specified axis.
- Return type:
- Raises:
ValueError – If the row/column is empty
See also
Series.idxmin
Return index of the minimum element.
Notes
This method is the
DataFrame
version ofndarray.argmin
.Examples
>>> small_df_data = [ ... ["lion", 78, 50, 50, 50], ... ["tiger", -35, 12, -378, 1246], ... ["giraffe", 54, -9, 67, -256], ... ["hippopotamus", np.nan, -537, -47, -789], ... ["tiger", 89, 2, 256, 246], ... ["tiger", -325, 2, 2, 5], ... ["tiger", 367, -367, 3, -6], ... ["giraffe", 25, 6, 312, 6], ... ["lion", -5, -5, -3, -4], ... ["lion", 15, np.nan, 2, 12], ... ["giraffe", 100, 200, 300, 400], ... ["hippopotamus", -100, -300, -600, -200], ... ["rhino", 26, 2, -45, 14], ... ["rhino", -7, 63, 257, -257], ... ["lion", 1, 2, 3, 4], ... ["giraffe", -5, -6, -7, 8], ... ["lion", 1234, 456, 78, np.nan], ... ]
>>> df = pd.DataFrame( ... data=small_df_data, ... columns=("species", "speed", "age", "weight", "height"), ... index=list("abcdefghijklmnopq"), ... )
Group by axis=0, apply idxmax on axis=0
>>> df.groupby("species").idxmin(axis=0, skipna=True) speed age weight height species giraffe p c p c hippopotamus l d l d lion i i i i rhino n m m n tiger f g b g
>>> df.groupby("species").idxmin(axis=0, skipna=False) speed age weight height species giraffe p c p c hippopotamus None d l d lion i None i None rhino n m m n tiger f g b g