modin.pandas.DatetimeIndex.std¶
- DatetimeIndex.std(axis: AxisInt | None = None, ddof: int = 1, skipna: bool = True, **kwargs) timedelta [source] (https://github.com/snowflakedb/snowpark-python/blob/v1.26.0/snowpark-python/src/snowflake/snowpark/modin/plugin/extensions/datetime_index.py#L1548-L1612)¶
Return sample standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using
ddof
.- Parameters:
axis (int, optional) – The axis to calculate the standard deviation over. This parameter is ignored - 0 is the only valid axis.
ddof (int, default 1) – Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. This parameter is not yet supported.
skipna (bool, default True) – Exclude NA/null values. If an entire row/column is
NA
, the result will beNA
.
- Return type:
Timedelta
See also
numpy.ndarray.std
Returns the standard deviation of the array elements along given axis.
Series.std
Return sample standard deviation over requested axis.
Examples
For
pandas.DatetimeIndex
:>>> idx = pd.date_range('2001-01-01 00:00', periods=3) >>> idx DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'], dtype='datetime64[ns]', freq=None) >>> idx.std() Timedelta('1 days 00:00:00')